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Intercept Problem (Riccardo BONALLI’s Ph.D. thesis)
● Objective : Intercept the target, need high precision and high terminal

velocity.
● Difficulty : Missiles can fly at high altitude (20-30 km), difficult to control

with aerodynamic actuators due to altitude dependance of air density.
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Motion Planning for Unmanned Aerial Vehicles

● Objective : Motion planning of Aerial Robots in cluttered environments.
● Difficulty : Dynamic environments (moving obstacles, etc.), obstacle

modeling.
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Reusable Launch Vehicles

● Objective : Return and landing of the first stage of space launchers.
● Difficulty : Highly constrained problem (aerodynamic and safety

constraints), may need re-ignition of rocket engines.
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Real-time Optimal Control
Challenge
Compute optimal trajectories in real time, by using embedded computers, to
make the vehicle adapt its trajectory to changes of the scenario.

● Global approaches (e.g. HJB):

Pros:

● Global optimum
● Do not require any initial guess

Cons:

● Time consuming for problems
of high dimension

● Cannot be used for real time
computations

● Local approaches
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Real-time Optimal Control
Challenge
Compute optimal trajectories in real time, by using embedded computers, to
make the vehicle adapt its trajectory to changes of the scenario.

1 Explicit Feedback Laws and Direct Methods (e.g. SQP):

Pros:

● Easy to implement
● Robustness

Cons:

● Lack of precision
● Expensive or sub-optimal

2 Indirect Methods:

Pros:

● High precision
● Fast convergence

Cons:

● Complex analysis
● Hard to initialize
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A library for solving real-time optimal control problems
SOCP (Shooting for Optimal Control Problems)
● Indirect methods for high precision.

● Multiple shooting for numerical robustness.

● Homotopy methods for initialization problems.

● Parallel computing for computation time.

● C++ library for best performance and embedded solutions.
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Return trajectory of Reusable Launch Vehicles
Objective (from the stage separation to the landing maneuver)

● Trajectory minimizing propellant consumption.
● Fixed final position and final velocity, free final time.
● Constraints on the angle-of-attack, the dynamic pressure, the thermal flux and

the load factor.

Figure: Toss-back model Figure: Glider model
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Return trajectory of Reusable Launch Vehicles
Objective (from the stage separation to the landing maneuver)

● Trajectory minimizing propellant consumption.
● Fixed final position, free final velocity and free final time.
● Constraints on the angle-of-attack, the dynamic pressure, the thermal flux and

the load factor.

RLV model

←Ð complex problem since it involves non-linear dynamics

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min −m(tf )

as well as pure state constraints

ṙ = v , (r , v ,u) ∈ R9 , ∥r∥ = 1

and mixed constraints

v̇ = L
m ka − D

m
va
∥va∥ − g + Tm

m γu − 2Ω × v −Ω × (Ω × r)

ṁ = −qmγ , 0 ≤ γ ≤ 1

(r , v ,m)(0) = (r 0, v0,m0) , (r , v)(tf ) = (r f , v f )
α ≤ αmax if ∥r∥ ≤ rref , Q ≤ Qmax , Φ ≤ Φmax, ηx ≤ ηx,max , ηz ≤ ηz,max
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Optimal Control with pure state constraints and mixed constraints

Optimal Control Problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ∫
tf

0 f 0(X ,U, t)dt + g(X(tf ), tf )

Ẋ = f (X ,U, t)

X(x) = X0, r(tf ) = r f

tf ,m(tf ) and v(tf ) are free,

∀t, cp(X(t)) ≤ 0,

←→ The dynamic pressure and the thermal flux

∀t, cm(X(t),U(t)) ≤ 0.

←→ The angle-of-attack and the load factor

where X = (r , v ,m) and U = (u, γ)
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Pontryagin’s Maximum Principle
p = (pr ,pv ,pm) ∈ R3

× R3
× R denotes the co-state vector

Hamiltonians

The extended Hamiltonian including the constraints

H̃ = H +αpcp(X) +αmcm(X ,U)

where the Hamiltonian H = p.f (X ,U, t) + p0f 0
(X ,u, t)

Dynamics of the co-state vector

ṗ = −
∂H̃
∂X

Minimization condition

H(t,X ,p,p0
,U) = min

V∈U
H(t,X ,p,p0

,V )

● If f and f 0 do not explicitly depend on t, H is constant.

Transversality conditions

Since m(tf ) and v(tf ) are free,
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

pv (tf ) = p0 ∂g
∂v
(tf ,X(tf ))

pm(tf ) = p0 ∂g
∂m
(tf ,X(tf ))

Continuity / Jump conditions

cm is assumed regular (MF-CQ).
● αp and αp are continuous and ∀t, αpcp(X) = αmcm(X ,U) = 0

At every contact point ti with the boundary of the pure state constraint,

● H̃(t+i ) = H̃(t−i ) and ∃νi ,p(t+i ) = p(t−i ) − νi
∂cp

∂X
(X(ti)).
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ṗ = −
∂H̃
∂X

Minimization condition

H(t,X ,p,p0
,U) = min

V∈U
H(t,X ,p,p0

,V )

● If f and f 0 do not explicitly depend on t, H is constant.

Transversality conditions

Since m(tf ) and v(tf ) are free,
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

pv (tf ) = p0 ∂g
∂v
(tf ,X(tf ))

pm(tf ) = p0 ∂g
∂m
(tf ,X(tf ))

Continuity / Jump conditions

cm is assumed regular (MF-CQ).
● αp and αp are continuous and ∀t, αpcp(X) = αmcm(X ,U) = 0

At every contact point ti with the boundary of the pure state constraint,

● H̃(t+i ) = H̃(t−i ) and ∃νi ,p(t+i ) = p(t−i ) − νi
∂cp

∂X
(X(ti)).

14/29 - RSS 2019 : Optimal control of Reusable Launch Vehicles



Introduction Return trajectory of Reusable Launch Vehicles (CNES-ONERA project) Glider model for RLVs (CNES-ONERA Post-Doctoral Fellowship) Conclusion

Pontryagin’s Maximum Principle
p = (pr ,pv ,pm) ∈ R3

× R3
× R denotes the co-state vector

Hamiltonians

The extended Hamiltonian including the constraints

H̃ = H +αpcp(X) +αmcm(X ,U)

where the Hamiltonian H = p.f (X ,U, t) + p0f 0
(X ,u, t)

Dynamics of the co-state vector
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Structure of the control
J(γ,u) denotes the expression in the Hamiltonian that depends on the control:

H = J(γ,u) + ...

● Hypothesis: Aerodynamic forces are assumed
to be negligible when the vehicule is in high
altitude

Ô⇒ J(γ,u) = γ (1 − qmpm +
Tm

m
⟨pv ,u⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ψ

Minimization condition

Ô⇒ u = −
pv
∥pv ∥

● When the switching function Ψ < 0, γ = 1.
● When the switching function Ψ > 0, γ = 0.

Figure: Boost-Back and
ballistic phases
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J(γ,u) denotes the expression in the Hamiltonian that depends on the control:

H = J(γ,u) + ...

● Hypothesis: Aerodynamic forces are assumed
to be negligible when the vehicule is in high
altitude

Ô⇒ J(γ,u) = γ (1 − qmpm +
Tm

m
⟨pv ,u⟩)
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Ψ

Minimization condition

Ô⇒ u = −
pv
∥pv ∥

● When the switching function Ψ < 0, γ = 1.
● When the switching function Ψ > 0, γ = 0.

Figure: Boost-Back and
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Re-entry burn
The previous hypothesis is irrelevant during the re-entry burn. It may complicate the
explicit computation of the optimal control input.

● Hypothesis: Aerodynamic forces
remain low during this phase

Ô⇒ u = − pv
∥pv∥

But the switching function Ψ may admit
a singular arc (Ψ = 0).
Ô⇒ γ can be mathematically complex.

Solution
● A constant approximation is taken for

the value of γ along this phase (e.g.
γ = 1/3).

Figure: Re-entry burn
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Atmospheric re-entry
● Ballistic phase, i.e. γ = 0
● The aerodynamic forces are

considered.
● The expression depending on the

control reads

J = L
m
⟨u, v⟩ ⟨u,pv ⟩

● u which minimizes J can be
explicitly computed.

Figure: Atmospheric re-entry phase

More details:
E. Brendel, B. Hérissé and E. Bourgeois, ”Optimal guidance for Toss Back concepts of Reusable Launch
Vehicles”, 8th European Conference for Aeronautics AND Aerospace Sciences (EUCASS), 2019.
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Homotopy method
● Solve a simplified problem for which an explicit solution can be found.

↖ Here, a double integrator!
● Initialize the co-state vector of a multiple shooting algorithm.
● Then, every neglected term is gradually added until the problem being solved is

the complete problem.

RLV model

(homotopy start with µx= 0 except µL2= 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min −

µL1

m(tf )

+ µL2 ∫
tf

0 γ2 dt

ṙ = v , (r , v ,u) ∈ R9, ∥r∥ = 1

v̇ =

µL

L
m ka −

µD

D
m

va
∥va∥ −

µg

g + Tm
m γu − 2Ω × v −Ω × (Ω × r)

ṁ = −

µq

qmγ , 0 ≤ γ ≤ 1

(r , v ,m)(0) = (r 0, v0,m0) , (r , v)(tf ) = (r f , v f )

µα

α ≤ αmax if ∥r∥ ≤ rref ,

µQ

Q ≤ Qmax ,

µΦ

Φ ≤ Φmax ,

µx
η

ηx ≤ ηx,max ,

µz
η

ηz ≤ ηz,max
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Numerical results: Toss-back model
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Numerical results: Toss-back model
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Optimal Guidance algorithm
● The offline reference trajectory is used to initialize the guidance algorithm
● Recompute the optimal control online with an homotopy on the initial state
● Evaluation: with randomly scattered parameters, e.g. initial state dispersion,

aerodynamic coefficients, maximal thrust, maximal mass flow rate...

Satisfactory precision of the guidance algorithm: The margin of error on final
position is below 100m (at 3km of the landing plateform)
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Toss-back vs Glider
● Similar models
● Vertical Takeoff Horizontal Landing
● The glider model uses a larger L/D ratio.

Figure: Tossback recovery Figure: Glider model
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Numerical results: Glider model
● Homotopy on the L/D ratio
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Numerical results: Glider model
● Homotopy on the the dynamic pressure
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Numerical results: Glider model
● Saturation of the angle-of-attack
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Conclusion

Conclusion
● An efficient C++ library implementing shooting methods.
● A general homotopy scheme for solving RLVs problems.
● The algorithm can be adapted for on-line recalculations with a more realistic

atmospheric model.

Perspectives
● Complete the study of the glider model (the load factor constraint, the optimal

guidance,etc.)
● Compare with direct methods.
● Assess the flight-back approach.
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