Optimal control of Reusable Launch Vehicles: an indirect shooting approach

Prince EDORH, Elliot BRENDEL, Bruno HÉRISSÉ

ONERA (DTIS/NGPA)

Outline

(1) Introduction

Optimal Control \& Applications at ONERA Real-time Optimal Control

2 Return trajectory of Reusable Launch Vehicles (CNES-ONERA project)
RLV Model
Pontryagin's Maximum Principle
Homotopy method
Numerical results: Toss-back model
Optimal Guidance
(3) Glider model for RLVs (CNES-ONERA Post-Doctoral Fellowship)

From toss-back recovery to glider model
Numerical results: Glider model
(4) Conclusion

Outline

(1) Introduction

Optimal Control \& Applications at ONERA Real-time Optimal Control

2 Return trajectory of Reusable Launch Vehicles (CNES-ONERA project)
RLV Model
Pontryagin's Maximum Principle
Homotopy method
Numerical results: Toss-back model
Optimal Guidance
(3) Glider model for RLVs (CNES-ONERA Post-Doctoral Fellowship)

From toss-back recovery to glider model
Numerical results: Glider model
(4) Conclusion

Intercent Problem (Riccardo RONAIII's.Ph_D thesis)

- Objective : Intercept the target, need high precision and high terminal velocity.
- Difficulty : Missiles can fly at high altitude (20-30 km), difficult to control with aerodynamic actuators due to altitude dependance of air density.

THAAD Interceptor [https://www.mda.mil]

Intercent Problem (Riccardo RONAIII's.Ph_D thesis)

- Objective : Intercept the target, need high precision and high terminal velocity.
- Difficulty : Missiles can fly at high altitude (20-30 km), difficult to control with aerodynamic actuators due to altitude dependance of air density.


```
Launch System /
Guidance - Control
```


Motion Planning for Unmanned_Aerial Vehicles

- Objective : Motion planning of Aerial Robots in cluttered environments.
- Difficulty : Dynamic environments (moving obstacles, etc.), obstacle modeling.

Reusable_L_aunch Vehicles

- Objective : Return and landing of the first stage of space launchers.
- Difficulty : Highly constrained problem (aerodynamic and safety constraints), may need re-ignition of rocket engines.

Real-time_Ontimal Control

Challenge

Compute optimal trajectories in real time, by using embedded computers, to make the vehicle adapt its trajectory to changes of the scenario.

- Global approaches (e.g. HJB):

Pros:

- Global optimum
- Do not require any initial guess
- Local approaches

Cons:

- Time consuming for problems of high dimension
- Cannot be used for real time computations

Real-time_Ontimal Control

Challenge

Compute optimal trajectories in real time, by using embedded computers, to make the vehicle adapt its trajectory to changes of the scenario.
(1) Explicit Feedback Laws and Direct Methods (e.g. SQP):

Pros:

- Easy to implement
- Robustness
(2) Indirect Methods:

Pros:

- High precision
- Fast convergence

Cons:

- Lack of precision
- Expensive or sub-optimal

Cons:

- Complex analysis
- Hard to initialize

A librarv for solving real_time_ontimal control problems

SOCP (Shooting for Optimal Control Problems)

- Indirect methods for high precision.

A librarv for solving real_time_ontimal control problems

SOCP (Shooting for Optimal Control Problems)

- Indirect methods for high precision.
- Multiple shooting for numerical robustness.

A librarv for solving real_time_ontimal control problems

SOCP (Shooting for Optimal Control Problems)

- Indirect methods for high precision.
- Multiple shooting for numerical robustness.
- Homotopy methods for initialization problems.

A librarv for solving real_time_ontimal control problems

SOCP (Shooting for Optimal Control Problems)

- Indirect methods for high precision.
- Multiple shooting for numerical robustness.
- Homotopy methods for initialization problems.
- Parallel computing for computation time.

A librarv for solving real-time_ontimal control problems

SOCP (Shooting for Optimal Control Problems)

- Indirect methods for high precision.
- Multiple shooting for numerical robustness.
- Homotopy methods for initialization problems.
- Parallel computing for computation time.
- C++ library for best performance and embedded solutions.

Outline

(1) Introduction

Optimal Control \& Applications at ONERA Real-time Optimal Control

(2) Return trajectory of Reusable Launch Vehicles (CNES-ONERA project)

RLV Model
Pontryagin's Maximum Principle Homotopy method
Numerical results: Toss-back model Optimal Guidance
(3) Glider model for RLVs (CNES-ONERA Post-Doctoral Fellowship)

From toss-back recovery to glider model
Numerical results: Glider model
(4) Conclusion

Return traiectorv of Reusable_Launch Vehicles

Objective (from the stage separation to the landing maneuver)

- Trajectory minimizing propellant consumption.
- Fixed final position and final velocity, free final time.
- Constraints on the angle-of-attack, the dynamic pressure, the thermal flux and the load factor.

Figure: Toss-back model

Figure: Glider model

Return traiectorv of Reusable__aunch Vehicles

Objective (from the stage separation to the landing maneuver)

- Trajectory minimizing propellant consumption.
- Fixed final position, free final velocity and free final time.
- Constraints on the angle-of-attack, the dynamic pressure, the thermal flux and the load factor.

RLV model

$$
\left\{\begin{array}{l}
\quad \min \quad-m\left(t_{f}\right) \\
\dot{\boldsymbol{r}}=\boldsymbol{v} \quad, \quad(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{9} \quad, \quad\|r\|=1 \\
\dot{\boldsymbol{v}}=\frac{L}{m} \boldsymbol{k}_{a}-\frac{D}{m} \frac{\boldsymbol{v}_{a}}{\left\|\boldsymbol{v}_{a}\right\|}-\boldsymbol{g}+\frac{T_{m}}{m} \gamma \boldsymbol{u}-2 \Omega \times \boldsymbol{v}-\Omega \times(\Omega \times \boldsymbol{r}) \\
\dot{m}=-q_{m} \gamma \quad, \quad 0 \leq \gamma \leq 1 \\
(\boldsymbol{r}, \boldsymbol{v}, m)(0)=\left(\boldsymbol{r}_{0}, \boldsymbol{v}_{0}, m_{0}\right), \quad(\boldsymbol{r}, \boldsymbol{v})\left(t_{f}\right)=\left(\boldsymbol{r}_{f}, \boldsymbol{v}_{f}\right) \\
\alpha \leq \alpha_{\max } \text { if } \quad\|r\| \leq r_{\mathrm{ref}}, \quad Q \leq Q_{\max }, \Phi \leq \Phi_{\max }, \eta_{x} \leq \eta_{x, \max }, \eta_{z} \leq \eta_{z, \max }
\end{array}\right.
$$

Return traiectorv of Reusable_Launch Vehicles

Objective (from the stage separation to the landing maneuver)

- Trajectory minimizing propellant consumption.
- Fixed final position, free final velocity and free final time.
- Constraints on the angle-of-attack, the dynamic pressure, the thermal flux and the load factor.

RLV model \longleftarrow complex problem since it involves non-linear dynamics

$$
\left\{\begin{array}{l}
\quad \min \quad-m\left(t_{f}\right) \\
\dot{\boldsymbol{r}}=\boldsymbol{v} \quad, \quad(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{9} \quad, \quad\|r\|=1 \\
\dot{\boldsymbol{v}}=\frac{L}{m} \boldsymbol{k}_{a}-\frac{D}{m} \frac{\boldsymbol{v}_{a}}{\left\|\boldsymbol{v}_{a}\right\|}-\boldsymbol{g}+\frac{T_{m}}{m} \gamma \boldsymbol{u}-2 \Omega \times \boldsymbol{v}-\Omega \times(\Omega \times \boldsymbol{r}) \\
\dot{m}=-q_{m} \gamma \quad, \quad 0 \leq \gamma \leq 1 \\
(\boldsymbol{r}, \boldsymbol{v}, m)(0)=\left(\boldsymbol{r}_{0}, \boldsymbol{v}_{0}, m_{0}\right), \quad(\boldsymbol{r}, \boldsymbol{v})\left(t_{f}\right)=\left(\boldsymbol{r}_{f}, \boldsymbol{v}_{f}\right) \\
\alpha \leq \alpha_{\max } \text { if } \quad\|r\| \leq r_{\mathrm{ref}}, \quad Q \leq Q_{\max }, \Phi \leq \Phi_{\max }, \eta_{x} \leq \eta_{x, \max }, \eta_{z} \leq \eta_{z, \max }
\end{array}\right.
$$

Return traiectorv of Reusable_launch Vehicles

Objective (from the stage separation to the landing maneuver)

- Trajectory minimizing propellant consumption.
- Fixed final position, free final velocity and free final time.
- Constraints on the angle-of-attack, the dynamic pressure, the thermal flux and the load factor.

RLV model \longleftarrow complex problem since it involves non-linear dynamics

$$
\left\{\begin{array}{l}
\quad \min \quad-m\left(t_{f}\right) \quad \text { as well as pure state constraints } \\
\dot{\boldsymbol{r}}=\boldsymbol{v} \quad, \quad(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{9}, \quad\|r\|=1 \\
\dot{\boldsymbol{v}}=\frac{L}{m} \boldsymbol{k}_{a}-\frac{D}{m} \frac{\boldsymbol{v}_{a}}{\left\|\boldsymbol{v}_{a}\right\|}-\boldsymbol{g}+\frac{T_{m}}{m} \gamma \boldsymbol{u}-2 \Omega \times \boldsymbol{v}-\Omega \times(\Omega \times \boldsymbol{r}) \\
\dot{m}=-q_{m} \gamma \quad, \quad 0 \leq \gamma \leq 1 \\
(\boldsymbol{r}, \boldsymbol{v}, m)(0)=\left(\boldsymbol{r}_{0}, \boldsymbol{v}_{0}, m_{0}\right),(\boldsymbol{r}, \boldsymbol{v})\left(t_{f}\right)=\left(\boldsymbol{r}_{f}, \boldsymbol{v}_{f}\right) \\
\alpha \leq \alpha_{\max } \text { if }\|r\| \leq r_{\mathrm{ref}}, \quad Q \leq Q_{\max }, \Phi \leq \Phi_{\max }, \eta_{x} \leq \eta_{x, \max }, \eta_{z} \leq \eta_{z, \max }
\end{array}\right.
$$

Return traiectorv of Reusable_launch Vehicles

Objective (from the stage separation to the landing maneuver)

- Trajectory minimizing propellant consumption.
- Fixed final position, free final velocity and free final time.
- Constraints on the angle-of-attack, the dynamic pressure, the thermal flux and the load factor.

RLV model \longleftarrow complex problem since it involves non-linear dynamics

$$
\left\{\begin{array}{l}
\quad \min \quad-m\left(t_{f}\right) \quad \text { as well as pure state constraints } \\
\dot{\boldsymbol{r}}=\boldsymbol{v} \quad, \quad(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{9}, \quad\|r\|=1 \quad \text { and mixed constraints } \\
\dot{\boldsymbol{v}}=\frac{L}{m} \boldsymbol{k}_{a}-\frac{D}{m} \frac{\boldsymbol{v}_{a}}{\left\|\boldsymbol{v}_{a}\right\|}-\boldsymbol{g}+\frac{T_{m}}{m} \gamma \boldsymbol{u}-2 \Omega \times \boldsymbol{v}-\Omega \times(\Omega \times \boldsymbol{r}) \\
\dot{m}=-q_{m} \gamma \quad, \quad 0 \leq \gamma \leq 1 \\
(\boldsymbol{r}, \boldsymbol{v}, m)(0)=\left(\boldsymbol{r}_{0}, \boldsymbol{v}_{0}, m_{0}\right),(\boldsymbol{r}, \boldsymbol{v})\left(t_{f}\right)=\left(\boldsymbol{r}_{f}, \boldsymbol{v}_{f}\right) \\
\alpha \leq \alpha_{\max } \text { if }\|r\| \leq r_{\text {ref }}, Q \leq Q_{\max }, \Phi \leq \Phi_{\max }, \eta_{x} \leq \eta_{x, \max }, \eta_{z} \leq \eta_{z, \max }
\end{array}\right.
$$

Optimal Control with pure state constraints and mixed constraints

Optimal Control Problem

$$
\left\{\begin{array}{l}
\quad \min \quad \int_{0}^{t_{f}} f^{0}(X, U, t) d t+g\left(X\left(t_{f}\right), t f\right) \\
\dot{X}=f(X, U, t) \\
X(x)=X_{0}, \boldsymbol{r}\left(t_{f}\right)=\boldsymbol{r}_{f} \\
t_{f}, m\left(t_{f}\right) \text { and } \boldsymbol{v}\left(t_{f}\right) \text { are free, } \\
\forall t, c_{p}(X(t)) \leq 0 \\
\forall t, c_{m}(X(t), U(t)) \leq 0
\end{array}\right.
$$

where $X=(\boldsymbol{r}, \boldsymbol{v}, m)$ and $U=(u, \gamma)$

Optimal Control with pure state constraints and mixed constraints

Optimal Control Problem

$$
\left\{\begin{array}{l}
\quad \min \quad \int_{0}^{t_{f}} f^{0}(X, U, t) d t+g\left(X\left(t_{f}\right), t f\right) \\
\dot{X}=f(X, U, t) \\
X(x)=X_{0}, \boldsymbol{r}\left(t_{f}\right)=\boldsymbol{r}_{f} \\
t_{f}, m\left(t_{f}\right) \text { and } \boldsymbol{v}\left(t_{f}\right) \text { are free, } \\
\forall t, c_{p}(X(t)) \leq 0, \\
\forall t, c_{m}(X(t), U(t)) \leq 0 .
\end{array} \longleftrightarrow\right. \text { The dynamic pressure and the thermal flux }
$$

$$
\text { where } X=(\boldsymbol{r}, \boldsymbol{v}, m) \text { and } U=(u, \gamma)
$$

Optimal Control with pure state constraints and mixed constraints

Optimal Control Problem

$$
\begin{aligned}
& \quad \min \quad \int_{0}^{t_{f}} f^{0}(X, U, t) d t+g\left(X\left(t_{f}\right), t f\right) \\
& \dot{X}=f(X, U, t) \\
& X(x)=X_{0}, \boldsymbol{r}\left(t_{f}\right)=\boldsymbol{r}_{f} \\
& t_{f}, m\left(t_{f}\right) \text { and } \boldsymbol{v}\left(t_{f}\right) \text { are free, } \\
& \forall t, c_{p}(X(t)) \leq 0, \quad \longleftrightarrow \text { The dynamic pressure and the thermal flux } \\
& \forall t, c_{m}(X(t), U(t)) \leq 0
\end{aligned}
$$

$$
\text { where } X=(\boldsymbol{r}, \boldsymbol{v}, m) \text { and } U=(u, \gamma)
$$

Pontrvagin's Maximum Princinle

$p=\left(p_{r}, p_{v}, p_{m}\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$ denotes the co-state vector
Hamiltonians
The extended Hamiltonian including the constraints

$$
\tilde{H}=H+\alpha_{p} c_{p}(X)+\alpha_{m} c_{m}(X, U)
$$

where the Hamiltonian $H=p \cdot f(X, U, t)+p^{0} f^{0}(X, u, t)$

Pontrvagin's Maximum Princinle

$p=\left(p_{r}, p_{v}, p_{m}\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$ denotes the co-state vector

Hamiltonians
The extended Hamiltonian including the constraints

$$
\tilde{H}=H+\alpha_{p} c_{p}(X)+\alpha_{m} c_{m}(X, U)
$$

Dynamics of the co-state vector

$$
\dot{p}=-\frac{\partial \tilde{H}}{\partial X}
$$

where the Hamiltonian $H=p \cdot f(X, U, t)+p^{0} f^{0}(X, u, t)$

Pontrvagin's Maximum Princinle

$p=\left(p_{r}, p_{v}, p_{m}\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$ denotes the co-state vector

Hamiltonians
The extended Hamiltonian including the constraints

$$
\tilde{H}=H+\alpha_{p} c_{p}(X)+\alpha_{m} c_{m}(X, U)
$$

Dynamics of the co-state vector

$$
\dot{p}=-\frac{\partial \tilde{H}}{\partial X}
$$

where the Hamiltonian $H=p \cdot f(X, U, t)+p^{0} f^{0}(X, u, t)$

Minimization condition

$$
H\left(t, X, p, p^{0}, U\right)=\min _{V \in \mathcal{U}} H\left(t, X, p, p^{0}, V\right)
$$

- If f and f^{0} do not explicitly depend on t, H is constant.

Pontrvasin's Maximum Princinle

$p=\left(p_{r}, p_{v}, p_{m}\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$ denotes the co-state vector
Hamiltonians
Dynamics of the co-state vector

$$
\dot{p}=-\frac{\partial \tilde{H}}{\partial X}
$$

where the Hamiltonian $H=p . f(X, U, t)+p^{0} f^{0}(X, u, t)$

Minimization condition

$$
H\left(t, X, p, p^{0}, U\right)=\min _{V \in \mathcal{U}} H\left(t, X, p, p^{0}, V\right)
$$

- If f and f^{0} do not explicitly depend on t, H is constant.

Transversality conditions

Since $m\left(t_{f}\right)$ and $\boldsymbol{v}\left(t_{f}\right)$ are free,
$\left\{\begin{array}{l}p_{v}\left(t_{f}\right)=p^{0} \frac{\partial g}{\partial v}\left(t_{f}, X\left(t_{f}\right)\right) \\ p_{m}\left(t_{f}\right)=p^{0} \frac{\partial g}{\partial m}\left(t_{f}, X\left(t_{f}\right)\right)\end{array}\right.$

Pontrvaøin's Maximum Principle

$p=\left(p_{r}, p_{v}, p_{m}\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$ denotes the co-state vector
Hamiltonians
Dynamics of the co-state vector
The extended Hamiltonian including the constraints

$$
\tilde{H}=H+\alpha_{p} c_{p}(X)+\alpha_{m} c_{m}(X, U)
$$

where the Hamiltonian $H=p \cdot f(X, U, t)+p^{0} f^{0}(X, u, t)$

Minimization condition

$$
H\left(t, X, p, p^{0}, U\right)=\min _{V \in \mathcal{U}} H\left(t, X, p, p^{0}, V\right)
$$

- If f and f^{0} do not explicitly depend on t, H is constant.

Transversality conditions

Since $m\left(t_{f}\right)$ and $v\left(t_{f}\right)$ are free, $\left\{\begin{array}{l}p_{v}\left(t_{f}\right)=p^{0} \frac{\partial g}{\partial v}\left(t_{f}, X\left(t_{f}\right)\right) \\ p_{m}\left(t_{f}\right)=p^{0} \frac{\partial g}{\partial m}\left(t_{f}, X\left(t_{f}\right)\right)\end{array}\right.$

Continuity / Jump conditions

c_{m} is assumed regular (MF-CQ).

- α_{p} and α_{p} are continuous and $\forall t, \alpha_{p} c_{p}(X)=\alpha_{m} c_{m}(X, U)=0$

At every contact point t_{i} with the boundary of the pure state constraint,

- $\tilde{H}\left(t_{i}^{+}\right)=\tilde{H}\left(t_{i}^{-}\right)$and $\exists \nu_{i}, p\left(t_{i}^{+}\right)=p\left(t_{i}^{-}\right)-\nu_{i} \frac{\partial c_{p}}{\partial X}\left(X\left(t_{i}\right)\right)$.

Structure_of the_control

$J(\gamma, u)$ denotes the expression in the Hamiltonian that depends on the control:

$$
H=J(\gamma, u)+\ldots
$$

Structure of the control

$J(\gamma, u)$ denotes the expression in the Hamiltonian that depends on the control:

$$
H=J(\gamma, u)+\ldots
$$

- Hypothesis: Aerodynamic forces are assumed to be negligible when the vehicule is in high altitude

$$
\Longrightarrow J(\gamma, u)=\gamma \underbrace{\left(1-q_{m} p_{m}+\frac{T_{m}}{m}\left\langle p_{v}, u\right\rangle\right)}_{\psi}
$$

Figure: Boost-Back and ballistic phases

Structure of the control

$J(\gamma, u)$ denotes the expression in the Hamiltonian that depends on the control:

$$
H=J(\gamma, u)+\ldots
$$

- Hypothesis: Aerodynamic forces are assumed to be negligible when the vehicule is in high altitude

$$
\Longrightarrow J(\gamma, u)=\gamma \underbrace{\left(1-q_{m} p_{m}+\frac{T_{m}}{m}\left\langle p_{v}, u\right\rangle\right)}_{\psi}
$$

Minimization condition

$$
\Longrightarrow u=-\frac{\boldsymbol{p}_{v}}{\left\|\boldsymbol{p}_{v}\right\|}
$$

- When the switching function $\Psi<0, \gamma=1$.
- When the switching function $\Psi>0, \gamma=0$.

Figure: Boost-Back and ballistic phases

Re-entry burn

The previous hypothesis is irrelevant during the re-entry burn. It may complicate the explicit computation of the optimal control input.

Figure: Re-entry burn

Re-entry burn

The previous hypothesis is irrelevant during the re-entry burn. It may complicate the explicit computation of the optimal control input.

- Hypothesis: Aerodynamic forces remain low during this phase

$$
\Longrightarrow u=-\frac{\boldsymbol{p}_{v}}{\left\|\boldsymbol{p}_{v}\right\|}
$$

Figure: Re-entry burn

Re-entry burn

The previous hypothesis is irrelevant during the re-entry burn. It may complicate the explicit computation of the optimal control input.

- Hypothesis: Aerodynamic forces remain low during this phase

$$
\Longrightarrow u=-\frac{\boldsymbol{p}_{v}}{\left\|\boldsymbol{p}_{v}\right\|}
$$

But the switching function Ψ may admit a singular arc $(\Psi=0)$.
$\Longrightarrow \gamma$ can be mathematically complex.

Figure: Re-entry burn

Re-entry burn

The previous hypothesis is irrelevant during the re-entry burn. It may complicate the explicit computation of the optimal control input.

- Hypothesis: Aerodynamic forces remain low during this phase

$$
\Longrightarrow u=-\frac{\boldsymbol{p}_{v}}{\left\|\boldsymbol{p}_{v}\right\|}
$$

But the switching function Ψ may admit a singular arc $(\Psi=0)$.
$\Longrightarrow \gamma$ can be mathematically complex.

Solution

- A constant approximation is taken for the value of γ along this phase (e.g. $\gamma=1 / 3)$.

Figure: Re-entry burn

Atmospheric re-entry

- Ballistic phase, i.e. $\gamma=0$
- The aerodynamic forces are considered.
- The expression depending on the control reads

$$
J=\frac{L}{m}\langle\boldsymbol{u}, \boldsymbol{v}\rangle\left\langle\boldsymbol{u}, p_{v}\right\rangle
$$

- \boldsymbol{u} which minimizes J can be explicitly computed.

Figure: Atmospheric re-entry phase

Atmospheric_re-entry

- Ballistic phase, i.e. $\gamma=0$
- The aerodynamic forces are considered.
- The expression depending on the control reads

$$
J=\frac{L}{m}\langle\boldsymbol{u}, \boldsymbol{v}\rangle\left\langle\boldsymbol{u}, p_{v}\right\rangle
$$

- \boldsymbol{u} which minimizes J can be explicitly computed.

Figure: Atmospheric re-entry phase

More details:

E. Brendel, B. Hérissé and E. Bourgeois, "Optimal guidance for Toss Back concepts of Reusable Launch Vehicles", 8th European Conference for Aeronautics AND Aerospace Sciences (EUCASS), 2019.

Homotonv method

- Solve a simplified problem for which an explicit solution can be found.

RLV model

$$
\left\{\begin{array}{l}
\min \quad-\quad m\left(t_{f}\right) \\
\dot{\boldsymbol{r}}=\boldsymbol{v} \quad, \quad(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{9}, \quad\|r\|=1 \\
\dot{\boldsymbol{v}}=\quad \frac{L}{m} \boldsymbol{k}_{a}-\quad \frac{D}{m} \frac{\boldsymbol{v}_{a}}{\left\|\boldsymbol{v}_{a}\right\|}-\boldsymbol{g}+\frac{T_{m}}{m} \gamma \boldsymbol{u}-2 \Omega \times \boldsymbol{v}-\Omega \times(\Omega \times \boldsymbol{r}) \\
\dot{m}=-q_{m} \gamma \quad, \quad 0 \leq \gamma \leq 1 \\
(\boldsymbol{r}, \boldsymbol{v}, m)(0)=\left(\boldsymbol{r}_{0}, \boldsymbol{v}_{0}, m_{0}\right),(\boldsymbol{r}, \boldsymbol{v})\left(t_{f}\right)=\left(\boldsymbol{r}_{f}, \boldsymbol{v}_{f}\right)
\end{array}\right.
$$

$$
\alpha \leq \alpha_{\max } \quad \text { if } \quad\|r\| \leq r_{\mathrm{ref}}, \quad Q \leq Q_{\max }, \quad \Phi \leq \Phi_{\max }, \quad \eta_{x} \leq \eta_{x, \max }, \quad \eta_{z} \leq \eta_{z, \max }
$$

Homotonv method

- Solve a simplified problem for which an explicit solution can be found.

RLV model (homotopy start with $\mu_{x}=0$ except $\mu_{L_{2}}=1$)

$$
\left\{\begin{array}{l}
\quad \min \quad-\mu_{L_{1}} m\left(t_{f}\right)+\mu_{L_{2}} \int_{0}^{t_{f}} \gamma^{2} d t \\
\dot{\boldsymbol{r}}=\boldsymbol{v} \quad, \quad(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{9}, \quad\|r\|=1 \\
\dot{\boldsymbol{v}}=\mu_{L} \frac{L}{m} \boldsymbol{k}_{a}-\mu_{D} \frac{D}{m} \frac{\boldsymbol{v}_{a}}{\left\|\boldsymbol{v}_{a}\right\|}-\mu_{g} \boldsymbol{g}+\frac{T_{m}}{m} \gamma \boldsymbol{u}-2 \Omega \times \boldsymbol{v}-\Omega \times(\Omega \times \boldsymbol{r}) \\
\dot{m}=-\mu_{q} \boldsymbol{q}_{m} \gamma \quad, \quad 0 \leq \gamma \leq 1 \\
(\boldsymbol{r}, \boldsymbol{v}, m)(0)=\left(\boldsymbol{r}_{0}, \boldsymbol{v}_{0}, m_{0}\right),(\boldsymbol{r}, \boldsymbol{v})\left(t_{f}\right)=\left(\boldsymbol{r}_{f}, \boldsymbol{v}_{f}\right) \\
\mu_{\alpha} \alpha \leq \alpha_{\max } \quad \text { if } \quad\|r\| \leq r_{\text {ref }}, \mu_{Q} Q \leq Q_{\max }, \mu_{\Phi} \Phi \leq \Phi_{\max }, \mu_{\eta}^{\times} \eta_{x} \leq \eta_{x, \max }, \mu_{\eta}^{z} \eta_{z} \leq \eta_{z, \max }
\end{array}\right.
$$

Homotonv method

- Solve a simplified problem for which an explicit solution can be found.
\nwarrow Here, a double integrator!

RLV model (homotopy start with $\mu_{x}=0$ except $\mu_{L_{2}}=1$)

$$
\left\{\begin{array}{l}
\quad \min \quad-\mu_{L_{1}} m\left(t_{f}\right)+\mu_{L_{2}} \int_{0}^{t_{f}} \gamma^{2} d t \\
\dot{\boldsymbol{r}}=\boldsymbol{v} \quad, \quad(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{9}, \quad\|r\|=1 \\
\dot{\boldsymbol{v}}=\mu_{L} \frac{L}{m} \boldsymbol{k}_{a}-\mu_{D} \frac{D}{m} \frac{\boldsymbol{v}_{a}}{\left\|\boldsymbol{v}_{a}\right\|}-\mu_{g} \boldsymbol{g}+\frac{T_{m}}{m} \gamma \boldsymbol{u}-2 \Omega \times \boldsymbol{v}-\Omega \times(\Omega \times \boldsymbol{r}) \\
\dot{m}=-\mu_{q} \boldsymbol{q}_{m} \gamma \quad, \quad 0 \leq \gamma \leq 1 \\
(\boldsymbol{r}, \boldsymbol{v}, m)(0)=\left(\boldsymbol{r}_{0}, \boldsymbol{v}_{0}, m_{0}\right),(\boldsymbol{r}, \boldsymbol{v})\left(t_{f}\right)=\left(\boldsymbol{r}_{f}, \boldsymbol{v}_{f}\right) \\
\mu_{\alpha} \alpha \leq \alpha_{\max } \quad \text { if } \quad\|r\| \leq r_{\text {ref }}, \mu_{Q} Q \leq Q_{\max }, \mu_{\Phi} \Phi \leq \Phi_{\max }, \mu_{\eta}^{\times} \eta_{x} \leq \eta_{x, \max }, \mu_{\eta}^{z} \eta_{z} \leq \eta_{z, \max }
\end{array}\right.
$$

Homotonv method

- Solve a simplified problem for which an explicit solution can be found.
\nwarrow Here, a double integrator!
- Initialize the co-state vector of a multiple shooting algorithm.

RLV model (homotopy start with $\mu_{x}=0$ except $\mu_{L_{2}}=1$)

$$
\left\{\begin{array}{l}
\quad \min \quad-\mu_{L_{1}} m\left(t_{f}\right)+\mu_{L_{2}} \int_{0}^{t_{f}} \gamma^{2} d t \\
\dot{\boldsymbol{r}}=\boldsymbol{v} \quad, \quad(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{9}, \quad\|r\|=1 \\
\dot{\boldsymbol{v}}=\mu_{L} \frac{L}{m} \boldsymbol{k}_{a}-\mu_{D} \frac{D}{m} \frac{\boldsymbol{v}_{a}}{\left\|\boldsymbol{v}_{a}\right\|}-\mu_{g} \boldsymbol{g}+\frac{T_{m}}{m} \gamma \boldsymbol{u}-2 \Omega \times \boldsymbol{v}-\Omega \times(\Omega \times \boldsymbol{r}) \\
\dot{m}=-\mu_{q} \boldsymbol{q}_{m} \gamma \quad, \quad 0 \leq \gamma \leq 1 \\
(\boldsymbol{r}, \boldsymbol{v}, m)(0)=\left(\boldsymbol{r}_{0}, \boldsymbol{v}_{0}, m_{0}\right),(\boldsymbol{r}, \boldsymbol{v})\left(t_{f}\right)=\left(\boldsymbol{r}_{f}, \boldsymbol{v}_{f}\right) \\
\mu_{\alpha} \alpha \leq \alpha_{\max } \quad \text { if } \quad\|r\| \leq r_{\text {ref }}, \mu_{Q} Q \leq Q_{\max }, \mu_{\Phi} \Phi \leq \Phi_{\max }, \mu_{\eta}^{\times} \eta_{x} \leq \eta_{x, \max }, \mu_{\eta}^{z} \eta_{z} \leq \eta_{z, \max }
\end{array}\right.
$$

Homotonv method

- Solve a simplified problem for which an explicit solution can be found.
\nwarrow Here, a double integrator!
- Initialize the co-state vector of a multiple shooting algorithm.
- Then, every neglected term is gradually added until the problem being solved is the complete problem.

RLV model (homotopy start with $\mu_{x}=0$ except $\mu_{L_{2}}=1$)

$$
\left\{\begin{array}{l}
\quad \min \quad-\mu_{L_{1}} m\left(t_{f}\right)+\mu_{L_{2}} \int_{0}^{t_{f}} \gamma^{2} d t \\
\dot{\boldsymbol{r}}=\boldsymbol{v} \quad, \quad(\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{u}) \in \mathbb{R}^{9}, \quad\|r\|=1 \\
\dot{\boldsymbol{v}}=\mu_{L} \frac{L}{m} \boldsymbol{k}_{a}-\mu_{D} \frac{D}{m} \frac{\boldsymbol{v}_{a}}{\left\|\boldsymbol{v}_{a}\right\|}-\mu_{g} \boldsymbol{g}+\frac{T_{m}}{m} \gamma \boldsymbol{u}-2 \Omega \times \boldsymbol{v}-\Omega \times(\Omega \times \boldsymbol{r}) \\
\dot{m}=-\mu_{q} \boldsymbol{q}_{m} \gamma \quad, \quad 0 \leq \gamma \leq 1 \\
(\boldsymbol{r}, \boldsymbol{v}, m)(0)=\left(\boldsymbol{r}_{0}, \boldsymbol{v}_{0}, m_{0}\right),(\boldsymbol{r}, \boldsymbol{v})\left(t_{f}\right)=\left(\boldsymbol{r}_{f}, \boldsymbol{v}_{f}\right) \\
\mu_{\alpha} \alpha \leq \alpha_{\max } \quad \text { if } \quad\|r\| \leq r_{\text {ref }}, \mu_{Q} Q \leq Q_{\max }, \mu_{\Phi} \Phi \leq \Phi_{\max }, \mu_{\eta}^{x} \eta_{x} \leq \eta_{x, \max }, \mu_{\eta}^{z} \eta_{z} \leq \eta_{z, \max }
\end{array}\right.
$$

Numerical_results: Toss-back model

Dynamic Pressure

Numerical results: Toss-back model

Ontimal_Guidance alororithm

- The offline reference trajectory is used to initialize the guidance algorithm
- Recompute the optimal control online with an homotopy on the initial state
- Evaluation: with randomly scattered parameters, e.g. initial state dispersion, aerodynamic coefficients, maximal thrust, maximal mass flow rate...

Ontimal_Guidance aloorithm

- The offline reference trajectory is used to initialize the guidance algorithm
- Recompute the optimal control online with an homotopy on the initial state
- Evaluation: with randomly scattered parameters, e.g. initial state dispersion, aerodynamic coefficients, maximal thrust, maximal mass flow rate...

Satisfactory precision of the guidance algorithm: The margin of error on final position is below 100 m (at 3 km of the landing plateform)

Ontimal_Guidance aloorithm

- The offline reference trajectory is used to initialize the guidance algorithm
- Recompute the optimal control online with an homotopy on the initial state
- Evaluation: with randomly scattered parameters, e.g. initial state dispersion, aerodynamic coefficients, maximal thrust, maximal mass flow rate...

Satisfactory precision of the guidance algorithm: The margin of error on final position is below 100 m (at 3 km of the landing plateform)

Ontimal_Guidance aloorithm

- The offline reference trajectory is used to initialize the guidance algorithm
- Recompute the optimal control online with an homotopy on the initial state
- Evaluation: with randomly scattered parameters, e.g. initial state dispersion, aerodynamic coefficients, maximal thrust, maximal mass flow rate...

Satisfactory precision of the guidance algorithm: The margin of error on final position is below 100 m (at 3 km of the landing plateform)

Outline

(1) Introduction

Optimal Control \& Applications at ONERA Real-time Optimal Control
(2) Return trajectory of Reusable Launch Vehicles (CNES-ONERA project) RLV Model
Pontryagin's Maximum Principle
Homotopy method
Numerical results: Toss-back model
Optimal Guidance
(3) Glider model for RLVs (CNES-ONERA Post-Doctoral Fellowship)

From toss-back recovery to glider model Numerical results: Glider model
(4) Conclusion

Toss-back vs Glider

- Similar models
- Vertical Takeoff Horizontal Landing
- The glider model uses a larger L/D ratio.

Figure: Tossback recovery

Figure: Glider model

Numerical results: Glider model

- Homotopy on the L/D ratio

Numerical results: Glider model

- Homotopy on the the dynamic pressure

Numerical results: Glider model

- Saturation of the angle-of-attack

Outline

(1) Introduction

Optimal Control \& Applications at ONERA Real-time Optimal Control
(2) Return trajectory of Reusable Launch Vehicles (CNES-ONERA project)

RLV Model
Pontryagin's Maximum Principle
Homotopy method
Numerical results: Toss-back model
Optimal Guidance
(3) Glider model for RLVs (CNES-ONERA Post-Doctoral Fellowship)

From toss-back recovery to glider model
Numerical results: Glider model
(4) Conclusion

Conclusion

Conclusion

- An efficient C++ library implementing shooting methods.
- A general homotopy scheme for solving RLVs problems.
- The algorithm can be adapted for on-line recalculations with a more realistic atmospheric model.

Perspectives

- Complete the study of the glider model (the load factor constraint, the optimal guidance,etc.)
- Compare with direct methods.
- Assess the flight-back approach.

The_SOCP Team

https://github.com/bherisse/socp

Prince EDORH DTIS/NGPA

Elliot BRENDEL DTIS/NGPA

Bruno HÉRISSÉ DTIS/NGPA

Riccardo BONALLI DTIS/NGPA alumni

