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Motivation

Robust control!
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Motivation

Guiding a launch vehicle =
Optimal Control Problem (OCP)

OCP formulation

min
u(⋅) ∫

tf

0
`(y(t),u(t), ξ)dt

s.t.

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ẏ(t) = f (y(t),u(t), ξ),
y(0) = y0,
y(tf ) ∈ Yf ,
tf is free.

Model not exact!
Depends on
● parameters ξ,
● initial state y0.
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Motivation

Hypothesis:
bounded uncertainties on
parameters and initial state.
ξ ∈ [ξ] and y0 ∈ [y0]

Dynamics with uncertainties

{
ẏ ∈ [f ](y ,u, [ξ])
y(0) ∈ [y0]

Goal: enclose optimal
trajectories, assess risks

time t

y0

st
at

e
y

Orange: Possible trajectories of a falling
ball with uncertainties
Grey: unsafe set
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Validated methods

Principle:
1 enclose results in sets : [π] = [3.14,3.15]
2 replace function f with set valued [f ] s.t. [f ] ([a]) ⊇ {f (a)∣∀a ∈ [a]} .

Sets:

Cheap but
significant over
approximation

Precise but
expensive Good middle ground
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Validated simulation

Let an uncontrolled system:

{
ẋ ∈ [g](x , [ξ])
x(0) ∈ [x0]

Validated simulation =
enclosure in a sequence of boxes
(dashed) and zonotopes (blue).

DynIbex = C++ library with
validated Runge Kutta methods
and zonotopes. 0 h 2h 3h 4h 5h 6h 7h 8h

time t

0

st
at

e
y

What if trajectories are subject to a control
defined implicitely as solution of an OCP?
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Characterization of optimal trajectories

Pontryagin’s Maximum Principle (PMP)
Optimal trajectories are caracterized by an uncontrolled switched system with
constraints:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋ(t) = gn(x(t), ξ), ∀t ∈ [Θ+n−1,Θ−n ]

x(0) = (
y0
p0

) ,

with constraints
Cn(x(Θ−n)) = 0,∀n ∈ 1..N,

Variables :
● initial co-state p0 ∈ Rn,
● transition times 0 < Θ1 < ... < ΘN = tf .

Problem : deal with variable transition times
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Building spatio temporal zonotopes with validated Taylor

[ỹ]= Picard box that encloses all
trajectories over time range [0,h]

Subsequent derivatives of f over
[ỹ] are enclosed

A validated Taylor interpolation
yields a zonotope enclosing
trajectories over time range [0,h]

Spatio temporal zonotopes =
state + time coordinates

time t0 h

st
at
e

y

[ỹ]
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Constrained spatio temporal zonotopes

Let a variable transition time
Θ ∈ [Θ,Θ].

1 take h = Θ −Θ,
2 enclose trajectories over

[Θ,Θ] in a zonotope,
3 add C(x(Θ−)) = 0 as
constraints,

4 propagate constraints
backward with guaranteed
linearization.

Problem : how do we know
bounds Θ and Θ?

Θ  Θ

Dashed: spatio temporal zonotopes
Plain: zonotopes + optimality condition
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Enclosing variables with an inflate & contract method

Problem : need an enclosure of the variables.

initial co-state p0

tr
an

si
ti

on
ti

m
e

Θ

Inflate & contract method:

Start with a box enclosing
numerical solutions, inflate it
until it contains all solutions.

Contract the box with fixed
point iterations.

→ validated enclosure of all
variables

→ self contained method
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Back to aerospace problems

Consider a simple take-off
problem:

Goddard’s problem

min
u(⋅) ∫

tf

0
∣u∣dt

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ(t) = v ,
v̇(t) = − G

r2 +
Cu
m ,

ṁ(t) = −b∣u∣,
y(0) = y0
r(tf ) = rf ,
v(tf ),m(tf ), tf
are free.

0 .Θ1 .Θ2

time t

r0

rf

h
ei

gh
t
r

Orange: trajectories for various values of the
parameters. They are enclosed as intended.
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Conclusion

Our method:
1 OCP → uncontrolled switched system,
2 enclose system at transition time with spatio temporal zonotopes,
3 add optimality conditions as constraints, propagate them backward,
4 inflate & contract method.

Future works:
● more complex aerospace problems,
● decrease the over approximation.
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