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Abstract— A controlled system subject to dynamics with
unknown but bounded parameters is considered. The control
is defined as the solution of an optimal control problem,
which induces hybrid dynamics. A method to enclose all
optimal trajectories of this system is proposed. Using interval
and zonotope based validated simulation and Pontryagin’s
Maximum Principle, a characterization of optimal trajectories,
a conservative enclosure is constructed. The usual validated
simulation framework is modified so that possible trajectories
are enclosed with spatio-temporal zonotopes that simplify
simulation through events. Then optimality conditions are
propagated backward in time and added as constraints on
the previously computed enclosure. The obtained constrained
zonotopes form a thin enclosure of all optimal trajectories that
is less susceptible to accumulation of error. This algorithm is
applied on Goddard’s problem, an aerospace problem with a
bang-bang control.

I. INTRODUCTION

Optimal control of aerospace systems is performed by
modeling the considered system by dynamics depending on
multiple parameters (for example the engine thrust parame-
ter) and an initial state (initial velocity, mass,...). Pontryagin’s
Maximum Principle (PMP) provides necessary optimality
conditions for the resolution of optimal control problems by
transforming an optimal control problem into a two point
boundary value problem which can be solved accurately [1],
[2]. However, some of the parameters and initial states may
be subject to uncertainties, that is, their exact value is subject
to perturbations and estimation errors. Since the solution of
an optimal control problem can rarely be explicitly expressed
in a closed loop form, the effect of those perturbations
can be hard to predict. This is complicated further by the
fact that optimal trajectories tend to have hybrid behaviors:
they may be subject to discrete events that abruptly change
dynamics and state. For instance, Goddard’s problem [1],
which consists in launching a rocket to a given position
while minimizing its fuel consumption, alternates between
a full throttle mode and a free fall mode. The duration of
these phases depends on the parameters.

Usually, optimal control problems are solved using the
nominal values of the parameters. Then the robustness of
the solution is demonstrated by dispersing the parameters
around nominal values with Monte Carlo simulations [3].
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This method does not exclude the possibility of failure,
which can be problematic on critical systems. In addition
these problem-solving methods often introduce numerical
approximations, which question the validity of the results.

Interval arithmetic has shown its ability to address many
control problems [4], providing validated solutions while
dealing with method uncertainties (numerical approxima-
tions) as well as with model uncertainties. These methods can
also be used to design robust optimal control. For instance,
[5] proposes algorithms to compute a control that stirs a
system to a desired state for any realization of a bounded
noise while achieving the lowest upper bound on the cost.
While intervals vectors, a.k.a. boxes, are a computationally
cheap set representation, their rectangular shape induces a
loss of precision known as the wrapping effect.

A more precise state representation known as zonotopes
is derived from intervals [6]. Zonotopes have been used to
over approximate the reachable set of dynamic systems [7],
[8]. However zonotopes are not closed under intersections
and unions. As a consequence, simulation of hybrid sys-
tems often requires to convert to a more costly polytope
representation during events [9], [10]. In recent years, a
new state representation known as constrained zonotopes
was proposed [11]. These sets benefit from the zonotope
representation while being closed under intersections. Thus,
set valued predictor-corrector algorithms for discrete-time
systems with uncertainties were designed using constrained
zonotopes [12].

Our aim is to create similar algorithms for continuous-time
controlled system with uncertainties when the control is de-
fined as the solution of an optimization problem. Enclosures
for such systems were theorized in a previous work [13]
but proposed interval based methods were limited to low
dimension problems with no hybrid behaviors. This article
presents a constrained zonotope based method to compute
enclosures for a wider range of problems.

First the problem is presented and notions of optimal
control and set membership methods are recalled. Then
the control problem is transformed into an equivalent time-
switched boundary value problem and a rough enclosure is
built. The system is enclosed in spatio temporal zonotopes
that allow the fixation of switch times that would normally
vary with uncertainties. Afterward, boundary constraints are
propagated backward in time and added as constraints on
aforementioned zonotopes. The resulting algorithm as well
as a simple initialization routine are showcased on Goddard’s
problem.



II. PROBLEM FORMULATION

Consider the following Optimal Control Problem (OCP):

min
u(·)

∫ t f

0
`(y(t),u(t),ξnom +δξ (t))dt

s.t.
{

ẏ(t) = f (y(t),u(t),ξnom +δξ (t)),
y(0) = y0, y(t f ) ∈ Y f , t f is free.

(1)

Interpretation: the trajectory of a controlled system is
optimized. The system is characterized by the following data:
• A state y(t) ∈ Rd . The time function y(·) : [0, t f ]→ Rd

is the trajectory.
• A control input u(·) : [0, t f ]→U .
• Parameters ξnom+δξ (t)∈ [ξ ]. They are equal to a fixed

nominal value ξnom subject to time dependent distur-
bances δξ (·), e.g. estimation errors, material fatigue.

• Dynamics f : Rd×U × [ξ ]→ Rd .
• An instantaneous cost ` : Rd×U × [ξ ]→ R.
• An initial state y0 ∈ Rd .
• Final constraints y(t f ) ∈ Y f and eventual state con-

straints.
The exact value of the initial state y0 is unknown but within
an interval enclosure: y0 ∈ [y0]. f and ` are assumed to be
sufficiently smooth, see [1], [2] for details.

It is assumed that the disturbances depend on time but
are bounded. It follows that there exists a box [ξ ] s.t.
∀t,ξnom + δξ (t) ∈ [ξ ]. The time dependency establishes a
general framework that covers more scenarii than the ap-
proach considering that the parameters are unknown constant
values, as in [3]. It is worth noting that if one expects a given
parameter to be constant, it is possible to add this parameter
as a part of the system’s state with a null derivative. This
usually yields more precise enclosures as the algorithm
collects dependencies between the possible states and the
parameter value. To simplify notations, ξ (·) : [0, t f ]→ [ξ ]
will denote ξnom +δξ (·).

III. PRELIMINARIES

A. Characterization of optimal trajectories

OCP (1) is considered. A co-state p(·) : [0, t f ]→Rd (also
known as adjoint vector) is introduced to characterize the
optimal solution with the PMP (2). A reference theorem
can be found in [2], [1], [14], we propose a version with no
abnormal optimums in which parameters are highlighted.

Pontryagin’s Maximum Principle (PMP) If (y(·),u(·)) are
a normal optimum, then there exists a non trivial co-state p(·)
such that (y(·), p(·),u(·)) satisfy the following equations:

H(y, p,u,ξ ) = `(y,u)+ p · f (y,u,ξ )

ṗ(t) =−∂H
∂y

(y(t), p(t),u(t),ξ (t))

∀t ∈ [0, t f ],u(t) ∈ argminv∈U H(y(t), p(t),v,ξ (t)),

(2)

where H is the pre-Hamiltonian. The optimal control u(·)
is defined implicitly as minimizing the pre-Hamiltonian at
every time.

Considering the full state composed of time, state and
co-state, Equations (1) and (2) can be combined to obtain
uncontrolled System (3). The time coordinate simplifies
notations and is used by algorithms in Section IV.

ẋ(t) = g(x(t),ξ (t))

x =

 t
y
p

 ,g =


1

f (y,argminH,ξ )

−∂H
∂y

(y, p,argminH,ξ )

 (3)

This system is subject to a transversality condition at final
time t f depending on final constraints and final costs (see [1],
[2], [14] for detail). We write this condition as a constraint
C(x(t f )) = 0 with function C : R1+2d → R1+d .

Even when the controlled system is not hybrid, the pre-
Hamiltonian minimization in System (3) creates hybrid
behaviors, notably bang-bang controls. Furthermore, con-
strained systems undergo a co-state translation jump when
a state constraint activates [14]. Nevertheless, examination
of the problem yields the optimal sequence of modes as
well as switching functions Cn : R2d+1 7→ R that cause a
transition from mode n to mode n+1 when they reach 0. It
is common practice to add transition times Θn as variables
and Cn(x(Θ−n )) = 0 as constraints to the problem as it turns
the hybrid system into a simpler time switched system.

To sum up, System (3) can generally be expressed as
Switched System (4), which has a sequence of N modes
and translation jumps.

ẋ(t) = gn(x(t),ξ (t)), ∀t ∈ [Θ+
n−1,Θ

−
n ]

x(Θ+
n ) = x(Θ−n )+ zn, ∀n ∈ 0..N−1

x(0) = x0

(4)

where 0 = Θ0 < Θ1 < ... < ΘN = t f are transition times
and zn ∈ R1+2d are jump vectors. Switching and optimality
conditions are compiled as Constraints (5).

Cn(x(Θ−n )) = 0,∀n ∈ 1..N, (5)

where (Cn)n∈1..N−1 are the previously mentioned switch
functions and CN(x(Θ−N )) = 0 is the transversality condition
C(x(t f )) = 0. Uncertainties nudge the state which changes
the time at which constraints are satisfied. Hence Θn vary
depending on uncertainties.

B. Flow and resolvent of an Ordinary Differential Equation
(ODE)

Consider an ODE with initial time τ in the form:{
ẋ(t) = g(x(t),ξ (t))
x(τ) = xτ

A solution can be approximated by numerical methods,
such as Euler’s method, or more efficient Runge-Kutta meth-
ods [8]. Integrating the dynamics between two boundary
times τ and T can be seen as a flow function Φτ,T . Function
Φτ,T takes an initial state, simulates it from τ to T and
returns the final state. Φτ,T depends on parameters ξ (.) but
since parameters are data, this argument will be omitted to
simplify notations. If g is twice differentiable, the gradient



of Φτ,T exists and is the resolvent Rτ,T (xτ) of the linearized
system [15].

The resolvent Rτ,T (xτ) may be computed by integrating
ODE (6).

ẋ(t) = g(x(t),ξ (t))

Ṙτ,t(xτ) =
∂g
∂x

(x(t),ξ (t)) ·Rτ,t(xτ)

x(τ) = xτ

Rτ,τ(xτ) = In.

(6)

Chain Rule (7) is derived.

Rτ,T = Rt,T ·Rτ,t ,∀t,τ,T (7)

A global flow Φτ,T (x,z) of Switched System (4) is con-
structed by composing flows in between transitions and
jumps. This flow depends on jump vector z = (z0, ...,zN−1)∈
RN(2d+1). Because jumps are translation by a vector, the
gradient of the flow of Switched System (4) may also be
expressed as a resolvent that satisfies Chain Rule (7).

C. Interval arithmetic

An interval [x] is a convex subset of R that contains all
reals between a lower bound x and an upper bound x. With
x,x ∈ R∪{−∞,+∞}. Interval arithmetic can be used as an
alternative to floating-point arithmetic to obtain an enclosure
of the solution of a problem, rather than an approximation
[16].

Let a real valued function g : x 7→ g(x). An associated
inclusion function [g] : [x] 7→ [g]([x]) is a set valued function
satisfying Inclusion (8).

[g] ([x])⊇ {g(x)|∀x ∈ [x]} . (8)

We note [g] any set-valued function that satisfies (8).
Interval vectors, or boxes, are an axis-aligned rectangular

set in a finite dimensional space. They are an inexpen-
sive representation of a high dimensional set (compared to
polytopes) but their shape induces a wrapping effect during
computations [4].

D. Zonotopes and Constrained Zonotopes

0 Ẑ

Z · ε + Ẑ

Fig. 1. Zonotope and constrained zonotope. Left: The unit box [−1,1]dε

(blue) and the intersection of the unit box with constrained set A ·ε + Â = 0
(red). Right the d dimensional deformation of these sets by Z · ε + Ẑ with
d = 2. Zonotope (blue) and constrained zonotope (red).

Zonotopes and constrained zonotopes are subsets of Rd . A
zonotope Z= [Z, Ẑ] is the affine deformation of an unit box
defined by

{
Z · ε + Ẑ : ε ∈ [−1,1]dε

}
, where Z is the gener-

ator matrix, of dimension d×dε and Ẑ is the center vector

of dimension d×1. A zonotope is represented in blue right
of Figure 1. Proposed methods use symbolic zonotopes as
described in [6]. This formalism retain dependencies between
distinct zonotopes by having each coordinate εi of ε be a
unique noise symbol, thus connecting the ith column of every
generator matrices. New noise symbols are created during
computations to enclose errors and nonlinear phenomena
and satisfy principle (8). Operations on zonotopes, known
as affine arithmetic, may be found in [6].

A constrained zonotope ZA = [Z, Ẑ,A, Â] is the affine
deformation of a unit box intersected with a plane{

Z · ε + Ẑ : ε ∈ [−1,1]dε ,A · ε + Â = 0
}

, where A the con-
straint matrix and Â the constraint vector. See red in Figure 1.

A constrained zonotopes may be lifted, that is represented
as a regular zonotope of higher state dimension d:

ZA = [Z, Ẑ,A, Â]→ Z̃=

[(
Z
A

)
,

(
Ẑ
Â

)]
Z̃ may be manipulated by zonotope-based algorithms then

converted back into a constrained zonotope [11]. Hence the
constraint part of ZA may be treated as a constraint zonotope
A= [A, Â].

E. Validated simulation
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Fig. 2. Possible trajectories of a falling ball with unknown initial
velocity (orange) enclosed with validated simulation library DynIbex [8].
The propagation of the uncertainty on the initial velocity creates a tube of
possible trajectories. Validated simulation encloses trajectories in zonotopes
(blue, plain) at instants t j , and by Picard boxes (black, dashed) on time
ranges [t j, t j+1]. Here, time step is constant: t j = jh.

An uncontrolled set membership ODE is considered:{
ẋ(t) ∈ [g](x, [ξ ])
x(τ) ∈ X,

Validated simulation encloses every solution of this system
in a sequence of boxes and zonotopes.

To that end, the time range [τ,T ] is discretized in (t j) j∈0..J ,
t0 = τ, tJ = T . Starting with an enclosure X j of the systems
at time t j, a Picard box [x̃] that encloses the system on
time range [t j, t j+1] is built. Then a zonotope enclosure X j+1
of x(t j+1) is computed. We use the validated simulation
library DynIbex [8], which utilizes validated Runge-Kutta



methods coupled with inflating terms that enclose numerical
and method errors. Trajectories are enclosed in symbolic
zonotopes represented by sparse matrices. The output of
validated simulation is shown in Figure 2.

Validated simulation is similar to simulating multiple
systems over a common duration. Hence variable phase
durations like θn in System (4) that differ from one system
to another are challenging.

IV. ENCLOSURES OF ALL OPTIMAL TRAJECTORIES

In this section, an algorithm that encloses optimal trajecto-
ries is constructed. First variable mode durations are synchro-
nized using spatio temporal zonotopes. Then optimality con-
ditions are added to these zonotopes as constraints. Lastly, a
simple method to initialize the algorithm is proposed.

A. Event time fixation with Spatio-Temporal Zonotopes
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Fig. 3. Enclosure of a falling ball. Spatio temporal zonotopes (dashed)
enclose the system on a time ranges [t j, t j + h] with h such that the last
zonotope encloses

[
Θ,Θ

]
the entire duration during which the system

intersects with the set where C(x) = 0 (black line). Constrained zonotopes
(plain) are obtained by propagating constraint C(x(Θ)) = 0 backward, they
enclose the system at time Θ− τ j with τ j = t5− t j .

Optimal mode durations θn = Θn−Θn−1 of System (4)
depends on the uncertainties. It follows that there is a set[
θn,θn

]
of possible mode durations. As stated in Sections III-

E, validated simulation over a variable duration is challeng-
ing. To bypass this difficulty, System (4) is transformed into
an equivalent system with fixed mode durations equal to θn.
This system is obtained by adding a variable delay at the
start of each phase that synchronizes the end of the phase. A
component that encloses the flow of the system during this
delay is added to the jump.

First, bounds on the mode durations are identified. These
bounds may be computed with validated simulation. For
instance, in Figure 2, the enclosure of the height at time 7h
is entirely above 0 while it is entirely below zero at time 8h.
Suppose an event is triggered by reaching 0, then θ1 = 7h and
θ1 = 8h. Alternatively these bounds may be computed with
an inflate and contract method as proposed in Section IV-D.

Then, spatio-temporal zonotopes are introduced. Unlike
zonotopes in Figure 2 which enclose the state at instants,

spatio temporal zonotopes enclose the system on a time range
(see Figure 3). To construct those zonotopes, we proceed
as follows. Let X a zonotope enclosure of x(Θ−n ). X is
either the initial state or the output of previous simulations.
System (4) induces that x(Θ+

n ) ∈ X+ zn. Then a validated
Taylor interpolation [16] may be used. For instance, an order
zero interpolation yields Enclosure (9).

∀t ∈ [Θ+
n ,Θ

+
n +h],x(t) ∈ X+ zn + t× [gn+1]([x̃]), (9)

where [x̃] is a Picard box computed with validated simu-
lation that encloses time, state and co-states on time range
[Θ+

n ,Θ
+
n +h].

Take h = θn+1− θn+1. By replacing the time variable in
Equation (9) by a time zonotope T, Formula (10) is obtained.

∀t ∈ [Θ+
n ,Θ

+
n +h],x(t) ∈ X+ zn +T× [gn+1]([x̃])

∈ X+Zn
(10)

where T = h
2 +

h
2 εn is a zonotope that encloses time range

[0,h] and Zn is a zonotope enclosure of zn +Tn× [g]([x̃]). zn
may be enclosed like the initial co-state (see Section IV-D).

X+ Zn is a zonotope enclosure of the state over the
time range [Θ+

n ,Θ
+
n +θn+1−θn+1]. Hence simulating X+Zn

using dynamics gn+1 with fixed time horizon θn+1 yields an
enclosure of the system on time range [Θ+

n + θn+1,Θ
+
n +

θn+1] = [Θ−n+1]. Hence it encloses the system during the
transition from mode n to mode n+1.

By applying this procedure at each transition, System (11)
is obtained.

ẋ(t) ∈ [gn](x(t), [ξ ]), ∀t ∈ [Θ+
n−1,Θ

−
n ]

x(Θ+
n ) ∈ x(Θ−n )+Zn, ∀n ∈ 0..N−1

x(0) ∈ X0,
(11)

where Θn =∑
n
k=1 θ k. System (11) encloses the trajectories of

System (4) and has the same structure, but all mode durations
are fixed, hence it is easier to use validated simulation. The
jump that System (11) undergoes at each event corresponds
to simulating System (4) over a period h ∈ [0,θn+1−θn+1]
(see Figure 3). It follows that for all n and for all τ ∈
[0,θ n], an enclosure of System (11) at time Θn−τ encloses
System (4) on time range [Θn− τ,Θn− τ]. In particular it
encloses System (11) at time Θn− τ , which may be further
characterized by optimality conditions.

B. Propagate optimality conditions

Using backward propagation of boundary constraints, we
define a constraint that characterizes optimal solutions.

Proposition 1: Consider n ∈ 1..N, τ ∈ [0,θ n] and two
zonotopes X,Z.

Solutions (x,z) ∈ X×Z of boundary value problem with
System (11) and Constraints (5) at time Θn− τ satisfy the
following set membership constraints for all m≥ n:

0∈ [Cm]([Φ]Θn−τ,Θm(X̂, Ẑ))+[∇Cm]([Φ]Θn−τ,Θm(X,Z)) ·Wm,

where Wm are defined sequentially by:

Wn = [R]
Θn−τ,Θn

· (x− X̂)

Wm = [R]
Θm−1,Θm

· (Wm−1 + z− Ẑ),∀m ∈ n+1..N.
(12)



Proof: Using the flow of System (11), boundary Con-
straints (5) are propagated backward in time, which yields
Constraints (13).

Cm(ΦΘn−τ,Θm(x,z)) = 0,∀m ∈ n..N, (13)

Because (x,z) ∈ X×Z, the following first order centered
validated enclosure1 holds.

Cm(ΦΘn−τ,Θm(x,z))∈
[Cm]([Φ]Θn−τ,Θm(X̂, Ẑ))

+[∇Cm] · [∇ΦΘn−τ,Θm ] · (x− X̂,z− Ẑ)

Let Wm = [∇ΦΘn−τ,Θm ] · (x− X̂,z− Ẑ). Because gradients
of the global flow are resolvents, Wm may be expressed as
follows:

Wm = [R]
Θn−τ,Θm

· (x− X̂)+∑
m−1
k=n [R]

Θk,Θm
· (zk− Ẑk)

Applying Chain Rule (7) yields Equations (12).

Propagation of constraints is showcased in Figure 3.
Flows and resolvents may be enclosed with finite time

validated simulation as durations are fixed equal to τ or θ n.

C. Method: Enclosing optimal solutions

Algorithm 1 uses previously presented techniques to com-
pute enclosures XA

j at instants Θn−τn
j . (τn

j ) j∈0..J and number
J are chosen by the user. The n exponent specifies the
phase to which a given τn

j belongs. XA
j are self contained

as they have a time coordinate, hence they do not need this
specification. Lines 6 to 16 compute the constraint created
in Section IV-B.

Having a single constraint zonotope A for all zonotopes X j
yields more precise enclosures. Indeed, an optimal trajectory
satisfies optimality conditions at all times. It follows that
the optimal state can be characterized by both applying
optimality conditions at its current time and applying op-
timality conditions at another time and propagating them to
the current time. Having a single set of constraints does the
later, as constraints computed on X j are applied to all other
enclosures of the system.

Since symbolic zonotopes retain correlations between
zonotopes, zonotopes A, X j and Z are kept separate in
Algorithm 1. When using a zonotope formalism that does
not keep correlations, zonotopes A, X j and Z need to be
concatenated in a single zonotope in a manner similar to the
lift in Section III-D.

D. Simple inflate and contract algorithm to enclose variables

Algorithm 1 requires an enclosure P0 of all possible initial
co-states. When no enclosure is known, a box enclosures
[p0] may be computed using contractor theory [4]. Indeed,
let [K] the function that takes a box [p0], transforms it into
a zonotope P0, inputs it in Algorithm 1 and returns the
bounding box of PA

0 , where PA
0 are the co-state coordinates

of the initial enclosure XA
0 .

Since Algorithm 1 is such that PA
0 , encloses all optimal

co-states in [p0], we have the following properties

1similar to first order interval Newton method [16]

Algorithm 1: Enclose all optimal trajectories

Result: Constrained zonotopes XA
j that enclose

optimal trajectories
Data: Enclosures of event durations

[
θn,θn

]
n∈1..N ,

enclosure of the initial state Y0 and initial
co-state P0, time stamps τn

j such that τn
j < θn

1 X0← (0,Y0,P0);
2 Apply Section IV-A to compute jump vectors

Z= (Z0, ..,ZN−1);
3 A← zonotope with 0 lines;
4 foreach τn

j do
5 X j← validated simulation of System (11) from

time 0 to time Θn− τn
j with initial state X0

(adding jumps Zk at intermediate events);
6 [R]

Θn−τ,Θn
← validated simulation of System (6)

from time Θn− τ to time Θn;
7 Wn← [R]

Θn−τ,Θn
· (X j− X̂ j);

8 foreach m ∈ n+1..N do
9 [R]

Θm−1,Θm
← validated simulation of

System (6) from time Θm−1 to time Θm;
10 Wm← [R]

Θm−1,Θm
· (Wm−1 +Z− Ẑ);

11 end
12 foreach m ∈ n..N do
13 [Φ]Θn−τn

j ,Θm
(X̂ j, Ẑ)← validated simulation of

System (11) from time Θn− τn
j to time Θm

with initial state X̂ j
14 (adding jumps Ẑk at intermediate events);
15 Am, j←

[Cm]([Φ]Θn−τn
j ,Θm

(X̂ j, Ẑ))+ [∇Cm] ·Wm ;
16 Add line Am, j to A;
17 end
18 end

• [K]([p0])⊂ [p0],
• [K]([p0]) contains all optimal co-states in [p0],
• If [K]([p0]) ⊂ Int([p0]), the interior of [p0], then
[K]([p0]) contains all optimal co-states, or at least all
connected local optimums.

A classic inflate and contract algorithm is used to enclose
initial co-states: i) take a box [p0] computed by solving the
optimal control problem for some parameter values, ii) inflate
[p0] until [K]([p0])⊂ Int([p0]), iii) contract it with fixed point
iteration [p0]← [K]([p0]).
[K] may be extended to enclose jump vectors zn and mode

duration θn as well.

V. APPLICATION: GODDARD’S PROBLEM

A vertical take-off problem is considered:

min
u(·)

∫ t f

0
|u|dt

s.t.


ṙ(t) = v(t), r(0) = r0, r(t f ) = r f ,

v̇(t) =− G
r2 +

C
m u, v(0) = v0, v(t f ) free,

ṁ(t) =−b|u(t)|, m(0) = m0, m(t f ) free,
(14)
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Fig. 4. Results on Goddard’s Problem (14). Orange: simulations with
random parameters. Θ1 has two graduations that indicate bounds Θ1 and Θ1,
likewise for t f = Θ2. The generated constrained zonotopes (blue, plain) are
a much more precise enclosure of optimal trajectories than the unconstrained
hull (blue, dashed) which accumulates error. The red zonotope encloses the
system during the transition from full throttle to free fall.

where r,v,m are position, velocity and mass of a launcher
with a controlled thruster subject to gravity. It is the one-
dimensional version of Goddard’s Problem as formulated
in [1], without the drag force. Application of the PMP yields:

H(y, p,u,ξ ) = prv+ pv(− G
r2 +

C
m u)− pmb|u|

ṗr(t) =−2pv(t) G
r3

ṗv(t) =−pr(t)
ṗm(t) = pv(t) C

m2

u =

{ pv
|pv| if C|pv|− (1+bpm)m > 0
0 if C|pv|− (1+bpm)m < 0

(15)

The expression of u leads to a hybrid automaton with a
free fall mode when C|pv|− (1+bpm)m > 0, a full throttle
mode when C|pv| − (1+ bpm)m < 0 and a singular mode
if C|pv|− (1+bpm)m = 0 over a period of time. It follows
that C|pv|− (1+ bpm) = 0 at each mode transition. Further
analysis of the problem shows that the optimal solution
of the take off problem with no drag force has N = 2
phases, starting by full throttle and ending in free fall. This
coupled with transversality condition leads to constraints
functions (16).

C1(x) = C|pv|− (1+bpm)m

C2(x) =


r− r f

pv
pm
v

 (16)

We took an exact initial state and uncertain parameters:
r0 = 1, r f = 1.01, v0 = 0, m0 = 1 and C ∈ [3.4,3.6], G ∈
[0.99,1.01] and b ∈ [6.8,7.2]. We computed 100 optimal
trajectories with parameters taken at random in their re-
spective intervals. We then computed an enclosure of initial
co-states using the method developed in Section IV-D and
applied Algorithm 1. Results are displayed on Figure 4.
Optimal trajectories are enclosed as expected and optimality
constraints compensate for the accumulation of errors caused
by uncertainties.

VI. CONCLUSIONS

We proposed a method to enclose optimal trajectories.
The control problem was converted into a switched system
with constraints. This system was enclosed with spatio
temporal zonotopes in a manner that fixed switch times.
This simplified the use of validated simulation, which in
turn enabled the propagation of constraints backward in time,
thus refining the enclosure. Lastly, a simple method was
proposed to initialize the Algorithm, making the method self
contained. This method successfully enclosed optimal trajec-
tories of Goddard’s problem. The presented algorithm uses
constrained zonotopes which are a cheap state representation
that could be used in high dimension problems.

In future works, the addition of optimality constraints will
be embedded in the computation of zonotopes, rather than
be a separate step. This should reduce the accumulation of
errors and lead to tighter enclosures.
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eralized goddard’s problem,” Journal of Optimization Theory and
Applications, vol. 139, no. 2, pp. 439–461, 2008.
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